A predictive model of the effect of therapeutic radiation on the human ovary

Author:

Kelsey Thomas W.ORCID,Hua Chia-Ho,Wyatt Amber,Indelicato DannyORCID,Wallace W. Hamish

Abstract

Radiation to the female pelvis as part of treatment for cancer predisposes young women to develop Premature Ovarian Insufficiency (POI). As the human female is born with their full complement of non-growing follicles which decline in an exponential fashion until the menopause, the age at which POI occurs is dependent on the age of the patient at treatment and the dose received by the ovary. A model that predicts the age at which POI occurs for a known dose at a known age will aid counselling patients on their fertility risk. Patients deemed to be at high risk of POI may be considered to be good candidates for established fertility preservation techniques. An updated and externally validated model of the age-related decline in human ovarian reserve was combined with the best available estimate of the median lethal dose LD50 for the human ovary. Using known age at diagnosis and posited radiotherapy treatment plan to estimate the dose to the least-affected ovary, we use an age-related model of the decline in ovarian reserve to generate a personalized age prediction of premature ovarian insufficiency. Our algorithm is available as an online calculator which graphs model outputs to inform discussions around survivor fertility. We report four example cases across different ages and diagnoses, each with two carefully designed photon and proton treatment plans. The treatment options are compared in terms of remaining fertile lifespan for the survivor. International oncology guidelines now mandate the consideration of later fertility when reviewing treatment options for children diagnosed with cancer. Our calculator (https://sites.cs.st-andrews.ac.uk/radiosensitivity), and the underlying algorithm and models, allow detailed predictions of the impact of various radiotherapy plans on fertility. These patient-specific data enhance pre-treatment discussions around post-treatment fertility and fertility preservation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3