Use of a 3D-printed body surface percutaneous puncture guide plate in vertebroplasty for osteoporotic vertebral compression fractures

Author:

Chen JianquanORCID,Lin Xinyuan,Lv Zhouming,Chen Maoshui,Huang TaoshengORCID

Abstract

Background Percutaneous vertebroplasty (PVP) has been used widely to treat osteoporotic vertebral compression fractures (OVCFs). However, it has many disadvantages, such as excessive radiation exposure, long operation times, and high cement leakage rates. This study was conducted to explore the clinical effects and safety of the use of a three-dimensional (3D)-printed body-surface guide plate to aid PVP for the treatment of OVCFs. Methods This prospective cohort study was conducted with patients with OVCFs presenting between October 2020 and June 2021. Fifty patients underwent traditional PVP (group T) and 47 patients underwent PVP aided by 3D-printed body-surface guide plates (3D group). The following clinical and adverse events were compared between groups: the puncture positioning, puncture, fluoroscopy exposure and total operation times; changes in vertebral height and the Cobb angle after surgery relative to baseline; preoperative and postoperative visual analog scale and Oswestry disability index scores; and perioperative complications (bone cement leakage, neurological impairment, vertebral infection, and cardiopulmonary complications. Results The puncture, adjustment, fluoroscopy, and total operation times were shorter in the 3D group than in group T. Visual analog scale and Oswestry disability index scores improved significantly after surgery, with significant differences between groups (both p < 0.05). At the last follow-up examination, the vertebral midline height and Cobb angle did not differ between groups. The incidence of complications was significantly lower in the 3D group than in group T (p < 0.05). Conclusion The use of 3D-printed body-surface guide plates can simplify and optimize PVP, shortening the operative time, improving the success rate, reducing surgical complications, and overall improving the safety of PVP.

Funder

Science and Technology Program of Zhuhai City, Guangdong Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3