Modeling of high voltage induction motor cooling system using linear regression mathematical models

Author:

Rosli Nurfatihah SyalwiahORCID,Ibrahim Rosdiazli,Ismail Idris,Omar Madiah

Abstract

Achieving reliable power efficiency from a high voltage induction motor (HVIM) is a great challenge, as the rigorous control strategy is susceptible to unexpected failure. External cooling is commonly used in an HVIM cooling system, and it is a vital part of the motor that is responsible for keeping the motor at the proper operating temperature. A malfunctioning cooling system component can cause motor overheating, which can destroy the motor and cause the entire plant to shut down. As a result, creating a dynamic model of the motor cooling system for quality performance, failure diagnosis, and prediction is critical. However, the external motor cooling system design in HVIM is limited and separately done in the past. With this issue in mind, this paper proposes a combined modeling approach to the HVIM cooling system which consists of integrating the electrical, thermal, and cooler model using the mathematical model for thermal performance improvement. Firstly, the development of an electrical model using an established mathematical model. Subsequently, the development of a thermal model using combined mathematical and linear regression models to produce motor temperature. Then, a modified cooler model is developed to provide cold air temperature for cooling monitoring. All validated models are integrated into a single model called the HVIM cooling system as the actual setup of the HVIM. Ultimately, the core of this modeling approach is integrating all models to accurately represent the actual signals of the motor cooler temperature. Then, the actual signals are used to validate the whole structure of the model using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) analysis. The results demonstrate the high accuracy of the HVIM cooling system representation with less than 1% error tolerance based on the industrial plant experts. Thus, it will be helpful for future utilization in quality maintenance, fault identification and prediction study.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Dq Synchronous Reference Frame Model of A Series-Series Tuned Inductive Power Transfer System;S. Lee;IEEE Trans. Ind. Electron.,2020

2. Failure Prediction of Induction Motors: A Case;C. K. Amuzuvi,2020

3. Review of physical and mathematical modelling aspects of thermal management of induction motors;S. Sachin;J. Phys. Conf. Ser.,2020

4. Review of physical and mathematical modelling aspects of thermal management of induction motors Review of physical and mathematical modelling aspects of thermal management of induction motors;C. Series,2020

5. D-Q Mathematical Modelling and Simulation of Three-Phase Induction Motor for Electrical Fault Analysis;P. Dorji;Iarjset,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3