Abstract
The success of vision transformers (ViTs) has given rise to their application in classification tasks of small environmental microorganism (EM) datasets. However, due to the lack of multi-scale feature maps and local feature extraction capabilities, the pure transformer architecture cannot achieve good results on small EM datasets. In this work, a novel hybrid model is proposed by combining the transformer with a convolution neural network (CNN). Compared to traditional ViTs and CNNs, the proposed model achieves state-of-the-art performance when trained on small EM datasets. This is accomplished in two ways. 1) Instead of the original fixed-size feature maps of the transformer-based designs, a hierarchical structure is adopted to obtain multi-scale feature maps. 2) Two new blocks are introduced to the transformer’s two core sections, namely the convolutional parameter sharing multi-head attention block and the local feed-forward network block. The ways allow the model to extract more local features compared to traditional transformers. In particular, for classification on the sixth version of the EM dataset (EMDS-6), the proposed model outperforms the baseline Xception by 6.7 percentage points, while being 60 times smaller in parameter size. In addition, the proposed model also generalizes well on the WHOI dataset (accuracy of 99%) and constitutes a fresh approach to the use of transformers for visual classification tasks based on small EM datasets.
Funder
Major Projects of the National Social Science Foundation of China
Publisher
Public Library of Science (PLoS)
Reference58 articles.
1. A State-of-the-art Survey for Microorganism Image Segmentation Methods and Future Potential;F Kulwa;IEEE Access,2019
2. A Multi-scale CNN-CRF Framework for Environmental Microorganism Image Segmentation;J Zhang;BioMed Research International,2020
3. AGRICULTURAL MICROBIOLOGY;DM Dring;Kew Bulletin,2014
4. Medical microbiology and infection at a glance;SWB Newsom;Journal of Hospital Infection,2012
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献