Tuberculosis-specific antigen stimulated and unstimulated interferon-γ for tuberculous meningitis diagnosis: A systematic review and meta-analysis

Author:

Shi Fangyu,Qiu Xia,Yu Mingjing,Huang YanORCID

Abstract

Objective Tuberculous meningitis (TBM) is one of the most devastating TB. Accurate identification of TBM is helpful to eliminate TB. Therefore, we assessed the performance of TBAg stimulated IFN-γ (IGRA) and unstimulated IFN-γ in blood and cerebrospinal fluid (CSF) for diagnosing TBM. Methods We searched Web of Science, PubMed, Embase and the Cochrane Library databases until March 2022. Bivariate and hierarchical summary receiver operating characteristic models were employed to compute summary estimates for diagnostic accuracy parameters of IGRA and unstimulated IFN-γ in blood and CSF for diagnosing TBM. Results 28 studies including 1,978 participants and 2,641 samples met the inclusion criteria. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUROC) of blood IGRA were separately as 0.73, 0.83, 4.32, 0.33, 13.22 and 0.86, indicating a good diagnostic accuracy of blood IGRA for detecting TBM. The summary sensitivity, specificity, PLR, NLR, DOR and AUROC of CSF IGRA were separately as 0.77, 0.91, 8.82, 0.25, 34.59 and 0.93, indicating good diagnostic accuracy of CSF IGRA for detecting TBM. The summary sensitivity, specificity, PLR, NLR, DOR and AUROC of CSF IFN-γ were separately as 0.86, 0.92, 10.27, 0.16, 65.26 and 0.95, suggesting CSF IFN-γ provided excellent accuracy for diagnosing TBM. Conclusions For differentiating TBM from non-TBM individuals, blood and CSF IGRA are good assays and unstimulated CSF IFN-γ is an auxiliary excellent marker.

Funder

the grant from the project for disciplines of excellence, West China Hospital, Sichuan University

the grant from the Science and Technology Department in Sichuan province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3