ICD-10 based machine learning models outperform the Trauma and Injury Severity Score (TRISS) in survival prediction

Author:

Tran Zachary,Verma Arjun,Wurdeman TaylorORCID,Burruss Sigrid,Mukherjee Kaushik,Benharash PeymanORCID

Abstract

Background Precise models are necessary to estimate mortality risk following traumatic injury to inform clinical decision making or quantify hospital performance. The Trauma and Injury Severity Score (TRISS) has been the historical gold standard in survival prediction but its limitations are well-characterized. The present study used International Classification of Diseases 10th Revision (ICD-10) injury codes with machine learning approaches to develop models whose performance was compared to that of TRISS. Methods The 2015–2017 National Trauma Data Bank was used to identify patients following trauma-related admission. Injury codes from ICD-10 were grouped by clinical relevance into 1,495 variables. The TRISS score, which comprises the Injury Severity Score, age, mechanism (blunt vs penetrating) as well as highest 24-hour values for systolic blood pressure (SBP), respiratory rate (RR) and Glasgow Coma Scale (GCS) was calculated for each patient. A base eXtreme gradient boosting model (XGBoost), a machine learning technique, was developed using injury variables as well as age, SBP, RR, mechanism and GCS. Prediction of in-hospital survival and other in-hospital complications were compared between both models using receiver operating characteristic (ROC) and reliability plots. A complete XGBoost model, containing injury variables, vitals, demographic information and comorbidities, was additionally developed. Results Of 1,380,740 patients, 1,338,417 (96.9%) survived to discharge. Compared to survivors, those who died were older and had a greater prevalence of penetrating injuries (18.0% vs 9.44%). The base XGBoost model demonstrated a greater receiver-operating characteristic (ROC) than TRISS (0.950 vs 0.907) which persisted across sub-populations and secondary endpoints. Furthermore, it exhibited high calibration across all risk levels (R2 = 0.998 vs 0.816). The complete XGBoost model had an exceptional ROC of 0.960. Conclusions We report improved performance of machine learning models over TRISS. Our model may improve stratification of injury severity in clinical and quality improvement settings.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3