Using citizen science to determine if songbird nesting parameters fluctuate in synchrony

Author:

Harrod Sara E.ORCID,Rolland Virginie

Abstract

As global temperatures continue to rise, population or spatial synchrony (i.e., the degree of synchronization in the fluctuation of demographic parameters) can have important implications for inter- and intraspecific interactions among wildlife populations. Climatic fluctuations are common drivers of spatial synchrony, and depending on the degree of synchronization and the parameters impacted, synchrony can increase extinction probabilities. Although citizen science is an inexpensive method to collect long-term data over large spatial scales to study effects of climate changes on wildlife, few studies have used citizen science data to determine if this synchrony is occurring across populations and species. We used 21 years of citizen science nesting data collected on Eastern Bluebirds (Sialia sialis) and Carolina Chickadees (Poecile carolinensis), two widespread North American species with similar life histories and abundant data, to assess the degree of synchrony between and within their populations in the southeastern United States. We found little evidence of synchronous fluctuations in the nesting parameters of hatching success, hatchability, and fledging success between and within species, nor did we observe consistent patterns towards increased or decreased synchrony. Estimates of nesting parameters were high (≥ 0.83) and showed little variability (relative variance ≤ 0.17), supporting the hypothesis that parameters that strongly contribute to population growth rates (i.e., typically fecundity in short-lived species) show little interannual variability. The low variability and lack of synchrony suggest that these populations of study species may be resilient to climate change. However, we were unable to test for synchronous fluctuations in other species and populations, or in the survival parameter, due to large gaps in data. This highlights the need for citizen science projects to continue increasing public participation for species and regions that lack data.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

1. Life history variation predicts the effects of demographic stochasticity on avian population dynamics;B Sæther;Am Nat,2004

2. Intraspecific responses to climate in Pinus sylvestris.;GE Rehfeldt;Glob Chang Biol,2002

3. Impacts of climate warming on terrestrial ectotherms across latitude;CA Deutsch;Proc Natl Acad Sci U S A,2008

4. Impacts of climate change on avian populations

5. Sauer JR, Niven DK, Hines JE, Ziolkowski DJJ, Pardieck KL, Fallon JE, et al. The North American Breeding Bird Survey, results and analysis 1966–2019. Laurel, MD, United States; 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3