Network analysis of the human structural connectome including the brainstem

Author:

Salhi SalmaORCID,Kora Youssef,Ham Gisu,Zadeh Haghighi HadiORCID,Simon Christoph

Abstract

The underlying anatomical structure is fundamental to the study of brain networks, but the role of brainstem from a structural perspective is not very well understood. We conduct a computational and graph-theoretical study of the human structural connectome incorporating a variety of subcortical structures including the brainstem. Our computational scheme involves the use of Python DIPY and Nibabel libraries to develop structural connectomes using 100 healthy adult subjects. We then compute degree, eigenvector, and betweenness centralities to identify several highly connected structures and find that the brainstem ranks highest across all examined metrics, a result that holds even when the connectivity matrix is normalized by volume. We also investigated some global topological features in the connectomes, such as the balance of integration and segregation, and found that the domination of the brainstem generally causes networks to become less integrated and segregated. Our results highlight the importance of including the brainstem in structural network analyses.

Funder

NSERC Discovery Grant

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3