Abstract
The recent era has witnessed exponential growth in the production of multimedia data which initiates exploration and expansion of certain domains that will have an overwhelming impact on human society in near future. One of the domains explored in this article is content-based image retrieval (CBIR), in which images are mostly encoded using hand-crafted approaches that employ different descriptors and their fusions. Although utilization of these approaches has yielded outstanding results, their performance in terms of a semantic gap, computational cost, and appropriate fusion based on problem domain is still debatable. In this article, a novel CBIR method is proposed which is based on the transfer learning-based visual geometry group (VGG-19) method, genetic algorithm (GA), and extreme learning machine (ELM) classifier. In the proposed method, instead of using hand-crafted features extraction approaches, features are extracted automatically using a transfer learning-based VGG-19 model to consider both local and global information of an image for robust image retrieval. As deep features are of high dimension, the proposed method reduces the computational expense by passing the extracted features through GA which returns a reduced set of optimal features. For image classification, an extreme learning machine classifier is incorporated which is much simpler in terms of parameter tuning and learning time as compared to other traditional classifiers. The performance of the proposed method is evaluated on five datasets which highlight the better performance in terms of evaluation metrics as compared with the state-of-the-art image retrieval methods. Its statistical analysis through a nonparametric Wilcoxon matched-pairs signed-rank test also exhibits significant performance.
Publisher
Public Library of Science (PLoS)
Reference70 articles.
1. *Image Retrieval Method Based on Image Feature Fusion and Discrete Cosine Transform;D. Jiang;Applied Sciences,2021
2. *Combining cnn with hand-crafted features for image classification;Z. Tianyu;in *2018 14th IEEE International Conference on Signal Processing (ICSP),2018
3. *Automatic linguistic indexing of pictures by a statistical modeling approach;J. Li;IEEE Transactions on pattern analysis and machine intelligence,2003
4. *Imagenet classification with deep convolutional neural networks;A. Krizhevsky;in *Advances in neural information processing systems,2012
5. *Deep learning for content-based image retrieval: *A comprehensive study;J. Wan;in *Proceedings of the 22nd ACM international conference on Multimedia,2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献