Abstract
The effective segmentation of lesion(s) from dermoscopic skin images assists the Computer-Aided Diagnosis (CAD) systems in improving the diagnosing rate of skin cancer. The results of the existing skin lesion segmentation techniques are not up to the mark for dermoscopic images with artifacts like varying size corner borders with color similar to lesion(s) and/or hairs having low contrast with surrounding background. To improve the results of the existing skin lesion segmentation techniques for such kinds of dermoscopic images, an effective skin lesion segmentation method is proposed in this research work. The proposed method searches for the presence of corner borders in the given dermoscopc image and removes them if found otherwise it starts searching for the presence of hairs on it and eliminate them if present. Next, it enhances the resultant image using state-of-the-art image enhancement method and segments lesion from it using machine learning technique namely, GrabCut method. The proposed method was tested on PH2 and ISIC 2018 datasets containing 200 images each and its accuracy was measured with two evaluation metrics, i.e., Jaccard index, and Dice index. The evaluation results show that our proposed skin lesion segmentation method obtained Jaccard Index of 0.77, 0.80 and Dice index of 0.87, 0.82 values on PH2, and ISIC2018 datasets, respectively, which are better than state-of-the-art skin lesion segmentation techniques.
Funder
Deanship of Scientific Research at King Khalid University
Princess Nourah Bint Abdulrahman University
Institute of Manuscripts and Revival of Islamic Heritage, Umm Al-Qura University
Publisher
Public Library of Science (PLoS)
Reference34 articles.
1. Skin Disease Recognition Using Deep Saliency Features and Multimodal Learning of Dermoscopy and Clinical Images;Z. Ge,2017
2. “Melanoma skin cancer report. The Global Coalition for Melanoma Patient Advocacy,” https://melanomapatients.org.au/wp-content/uploads/2020/04/2020-campaign-report-GC-version-MPA_1.pdf., 2020.
3. “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012;H. W. Rogers;JAMA Dermatology,2015
4. Segmentation of skin lesion using Cohen–Daubechies–Feauveau biorthogonal wavelet;S. Khalid;Springerplus,2016
5. Automatic Skin Lesion Segmentation Using GrabCut in HSV Colour Space.;I. T. Fakrul;Computer Vision and Pattern Recognition,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献