Abstract
Bronchitis and pneumonia are the common respiratory diseases, of which pneumonia is the leading cause of mortality in pediatric patients worldwide and impose intense pressure on health care systems. This study aims to classify bronchitis and pneumonia in children by analyzing cough sounds. We propose a Classification Framework based on Cough Sounds (CFCS) to identify bronchitis and pneumonia in children. Our dataset includes cough sounds from 173 outpatients at the West China Second University Hospital, Sichuan University, Chengdu, China. We adopt aggregation operation to obtain patients’ disease features because some cough chunks carry the disease information while others do not. In the stage of classification in our framework, we adopt Support Vector Machine (SVM) to classify the diseases due to the small scale of our dataset. Furthermore, we apply data augmentation to our dataset to enlarge the number of samples and then adopt Long Short-Term Memory Network (LSTM) to classify. After 45 random tests on RAW dataset, SVM achieves the best classification accuracy of 86.04% and standard deviation of 4.7%. The precision of bronchitis and pneumonia is 93.75% and 87.5%, and their recall is 88.24% and 93.33%. The AUC of SVM and LSTM classification models on the dataset with pitch-shifting data augmentation reach 0.92 and 0.93, respectively. Extensive experimental results show that CFCS can effectively classify children into bronchitis and pneumonia.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Technology Achievements Transformation Demonstration Project of Sichuan Province of China
Fundamental Research Funds for the Central Universities
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献