Decoding molecular recognition of inhibitors targeting HDAC2 via molecular dynamics simulations and configurational entropy estimation

Author:

Tateing SuriyaORCID,Suree NutteeORCID

Abstract

Molecular recognition by enzymes is a complicated process involving thermodynamic energies governing protein-ligand interactions. In order to aid the estimation of inhibitory activity of compounds targeting an enzyme, several computational methods can be employed to dissect this intermolecular contact. Herein, we report a structural dynamics investigation of an epigenetic enzyme HDAC2 in differentiating its binding to various inhibitors within the sub-sites of its active site. Molecular dynamics (MD) simulation was employed to elucidate the intermolecular interactions as well as the dynamics behavior of ligand binding. MD trajectories of five distinct HDAC2-inhibitor complexes reveal that compounds lacking adequate contacts with the opening rim of the active site possess high fluctuation along the cap portion, thus weakening the overall affinity. Key intermolecular interactions determining the effective binding of inhibitors include hydrogen bonds with Gly154, Asp181, and Tyr308; hydrophobic interactions between Phe155/Phe210 and the linker region; and a pi-stacking with Arg39 at the foot pocket. Decomposition of the binding free energy calculated per-residue by MM/PBSA also indicates that the interactions within the internal foot pocket, especially with residues Met35, Leu144, Gly305, and Gly306, can contribute significantly to the ligand binding. Additionally, configurational entropy of the binding was estimated and compared to the scale of the binding free energy in order to assess its contribution to the binding and to differentiate various ligand partners. It was found that the levels of entropic contribution are comparable among a set of structurally similar carbamide ligands, while it is greatly different for the set of unrelated ligands, ranging from 2.75 to 16.38 kcal/mol for the five inhibitors examined. These findings exemplify the importance of assessing molecular dynamics as well as estimating the entropic contribution in evaluating the ligand binding mechanism.

Funder

Center of Excellence in Materials Science and Technology, Faculty of Science

Materials Science Research Center, Faculty of Science, Chiang Mai University

National Research Council of Thailand

the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, Office of National Higher Education Science Research and Innovation Policy Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference88 articles.

1. Histone modifications in fatty acid synthase modulated by carbohydrate responsive element binding protein are associated with non‑alcoholic fatty liver disease;C Cai;Int J Mol Med,2018

2. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure;R Ferriero;J Hepatol,2018

3. Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum.;A Kanyal;FEBS J,2018

4. The complex language of chromatin regulation during transcription;SL Berger;Nature,2007

5. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle?;RK Khangura;Eur J Pharmacol,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3