The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization

Author:

Su Ke,Liu Shaohua,Lu Wei

Abstract

In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is further reduced. Instead of the filter structure, we adopt a nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the result of each iteration. Feasibility of the algorithm are given, and the convergence under some assumptions is demonstrated. Numerical results and practical application are reported at the end.

Funder

Natural Science Foundation of Hebei Province

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. A derivative-free approximate gradient sampling algorithm for finite minimax problems;W. Hare;Comput Optim Appl,2013

2. A partially inexact bundle method for convex semi-infinite minmax problems;F. Antonio;Communications in Nonlinear Science and Numerical Simulation,2015

3. The Subgradient Method

4. A generalized gradient projection method based on a new working set for minimax optimization problems with inequality constraints;G Ma;J Inequal Appl,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3