The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs

Author:

Rose Christopher S.ORCID

Abstract

As the first and sometimes only skeletal tissue to appear, cartilage plays a fundamental role in the development and evolution of vertebrate body shapes. This is especially true for amphibians whose largely cartilaginous feeding skeleton exhibits unparalleled ontogenetic and phylogenetic diversification as a consequence of metamorphosis. Fully understanding the evolutionary history, evolvability and regenerative potential of cartilage requires in-depth analysis of how chondrocytes drive growth and shape change. This study is a cell-level description of the larval growth and postembryonic shape change of major cartilages of the feeding skeleton of a metamorphosing amphibian. Histology and immunohistochemistry are used to describe and quantify patterns and trends in chondrocyte size, shape, division, death, and arrangement, and in percent matrix from hatchling to froglet for the lower jaw, hyoid and branchial arch cartilages of Xenopus laevis. The results are interpreted and integrated into programs of cell behaviors that account for the larval growth and histology, and metamorphic remodeling of each element. These programs provide a baseline for investigating hormone-mediated remodeling, cartilage regeneration, and intrinsic shape regulating mechanisms. These programs also contain four features not previously described in vertebrates: hypertrophied chondrocytes being rejuvenated by rapid cell cycling to a prechondrogenic size and shape; chondrocytes dividing and rearranging to reshape a cartilage; cartilage that lacks a perichondrium and grows at single-cell dimensions; and an adult cartilage forming de novo in the center of a resorbing larval one. Also, the unexpected superimposition of cell behaviors for shape change onto ones for larval growth and the unprecedented exploitation of very large and small cell sizes provide new directions for investigating the development and evolution of skeletal shape and metamorphic ontogenies.

Funder

Biology Department of James Madison University

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference110 articles.

1. The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa;AG Cole;Zoology,2004

2. Studies on the structure & development of vertebrates. --

3. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage;M Kaucka;eLife,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3