Abstract
This paper is concerned with the unsolved issue of how to accurately predict the financial market volatility. We propose a novel volatility prediction method for stock index futures prediction based on LSTM, PCA, stock indices and relevant futures. Inspired by the recent advancement of deep learning methodology, six models that combine a variety of artificial intelligence techniques are compared, including ANN, ANN(PCA), ANN(AE), LSTM, LSTM(PCA), and LSTM(AE). That is, in the design and comparison of the proposed AI models, we consider the combination of two dimensionality reduction methods (PCA and AE) and two typical neural networks (ANN and LSTM) in processing time series data. Besides, to further assess the prediction performance of the proposed models, two widely-applied statistical models (i.e. AR and EGARCH) on volatility prediction are used as benchmarks. In the empirical study, we collect financial trading data in both China and the US, and compare the performances of different models in predicting 5 days and 10 days ahead volatilities of stock index futures. In all, our analysis supports the use of LSTM(PCA) model to tackle those irregular and complex datasets.
Publisher
Public Library of Science (PLoS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献