Applying novel connectivity networks to wood turtle populations to provide comprehensive conservation management strategies for species at risk

Author:

Bouchard CindyORCID,Lord Étienne,Tessier Nathalie,Lapointe François-Joseph

Abstract

Genetic diversity within and among populations is frequently used in prioritization processes to rank populations based on their vulnerability or distinctiveness, however, connectivity and gene flow are rarely considered within these frameworks. Using a wood turtle (Glyptemys insculpta) population graph, we introduce BRIDES as a new tool to evaluate populations for conservation purpose without focusing solely on individual nodes. BRIDES characterizes different types of shortest paths among the nodes of a subgraph and compares the shortest paths among the same nodes in a complete network. The main objectives of this study were to (1) introduce a BRIDES selection process to assist conservation biologists in the prioritization of populations, and (2) use different centrality indices and node removal statistics to compare BRIDES results and assess gene flow among wood turtle populations. We constructed six population subgraphs and used a stepwise selection algorithm to choose the optimal number of additional nodes, representing different populations, required to maximize network connectivity under different weighting schemes. Our results demonstrate the robustness of the BRIDES selection process for a given scenario, while inconsistencies were observed among node-based metrics. Results showed repeated selection of certain wood turtle populations, which could have not been predicted following only genetic diversity and distinctiveness estimation, node-based metrics and node removal analysis. Contrary to centrality measures focusing on static networks, BRIDES allowed for the analysis of evolving networks. To our knowledge, this study is the first to apply graph theory for turtle conservation genetics. We show that population graphs can reveal complex gene flow dynamics and population resiliency to local extinction. As such, BRIDES offers an interesting complement to node-based metrics and node removal to better understand the global processes at play when addressing population prioritization frameworks.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3