Discrimination between normal and cancer white blood cells using holographic projection technique

Author:

Abdelazeem Rania M.ORCID,Ghareab Abdelsalam Ibrahim DahiORCID

Abstract

White blood cells (WBCs) play a vital role in the diagnosis of many blood diseases. Such diagnosis is based on the morphological analysis of blood microscopic images which is performed manually by skilled hematologist. However, this method has many drawbacks, such as the dependence on the hematologist’s skill, slow performance, and varying accuracy. Therefore, in the current study, a new optical method for discrimination between normal and cancer WBCs of peripheral blood film (PBF) images is presented. This method is based on holographic projection technique which is able to provide an accurate and fast optical reconstruction method of WBCs floating in the air. Besides, it can provide a 3D visualization map of one WBC with its characterization parameters from only a single 2D hologram. To achieve that, at first, WBCs are accurately segmented from the microscopic PBF images using a developed in-house MATLAB code. Then, their associated phase computer-generated holograms (CGHs) are calculated using the well-known iterative Fourier transform algorithm (IFTA). Within the utilized algorithm, a speckle noise reduction technique, based on temporal multiplexing of spatial frequencies, is applied to minimize the speckle noise across the reconstruction plane. Additionally, a special hologram modulation is added to the calculated holograms to provide a 3D visualization map of one WBC, and discriminate normal and cancer WBCs. Finally, the calculated phase-holograms are uploaded on a phase-only spatial light modulator (SLM) for optical reconstruction. The optical reconstruction of such phase-holograms yields precise representation of normal and cancer WBCs. Moreover, a 3D visualization map of one WBC with its characterization parameters is provided. Therefore, the proposed technique can be used as a valuable tool for interpretation and analysis of WBCs, this in turn could provide an improvement in diagnosis and prognosis of blood diseases.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Counting white blood cells from a blood smear using fourier ptychographic microscopy;J. Chung;PLoS One,2015

2. Automated system for detection of white blood cells in human blood sample;S. Banerjee;Smart Innov. Syst. Technol.,2018

3. Segmentation of White Blood Cell, Nucleus and Cytoplasm in Digital Haematology Microscope Images: A Review-Challenges, Current and Future Potential Techniques;K. Al-Dulaimi;IEEE Rev. Biomed. Eng.,2021

4. Morphological classification of blood leucocytes by microscope images;V. Piuri;2004 IEEE Int. Conf. Comput. Intell. Meas. Syst. Appl. CIMSA,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3