LGCA-VHPPI: A local-global residue context aware viral-host protein-protein interaction predictor

Author:

Asim Muhammad NabeelORCID,Ibrahim Muhammad Ali,Malik Muhammad Imran,Dengel Andreas,Ahmed Sheraz

Abstract

Viral-host protein protein interaction (PPI) analysis is essential to decode the molecular mechanism of viral pathogen and host immunity processes which eventually help to control viral diseases and optimize therapeutics. The state-of-the-art viral-host PPI predictor leverages unsupervised embedding learning technique (doc2vec) to generate statistical representations of viral-host protein sequences and a Random Forest classifier for interaction prediction. However, doc2vec approach generates the statistical representations of viral-host protein sequences by merely modelling the local context of residues which only partially captures residue semantics. The paper in hand proposes a novel technique for generating better statistical representations of viral and host protein sequences based on the infusion of comprehensive local and global contextual information of the residues. While local residue context aware encoding captures semantic relatedness and short range dependencies of residues. Global residue context aware encoding captures comprehensive long-range residues dependencies, positional invariance of residues, and unique residue combination distribution important for interaction prediction. Using concatenated rich statistical representations of viral and host protein sequences, a robust machine learning framework “LGCA-VHPPI” is developed which makes use of a deep forest model to effectively model complex non-linearity of viral-host PPI sequences. An in-depth performance comparison of the proposed LGCA-VHPPI framework with existing diverse sequence encoding schemes based viral-host PPI predictors reveals that LGCA-VHPPI outperforms state-of-the-art predictor by 6%, 2%, and 2% in terms of matthews correlation coefficient over 3 different benchmark viral-host PPI prediction datasets.

Funder

Sartorius Artificial Intelligence Lab

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. The Human Toll of Viral Diseases

2. UNAIDS.”unaids report on the global aids epidemic 2010”.2010.

3. World Health Organization.”global hepatitis report”. 2017.

4. Understanding human-virus protein-proteininteractions using a human protein complex-based analysisframework;Shiping Yang;MSystems,2019

5. The promise andthe hope of gene therapy;Eleni Papanikolaou;Frontiers in Genome Editing,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3