Mechanism of gene network in the treatment of intracerebral hemorrhage by natural plant drugs in Lutong granules

Author:

Sun Jie,Li Na,Xu Min,Li Li,Chen Ji Lin,Chen Yong,Xu Jian Guo,Wang Ting HuaORCID

Abstract

Purpose To study the effects of Lu-tong Granules (LTG) in ICH etermine the underlying mechanism of molecular network Methods Modern bioinformatics and network pharmacology methods were used to predict molecular network mechanisms between ICH and LTG. Animal experiments were carried out to verify the effect of LTG for the treatment of ICH, combined with behavior test and morphologic detection. Results Forty-three active components in LTG and involved 192 gene targets were identified successfully. Moreoner, they were intersected with 1132 genes of ICH,88 intersection targets were obtained. subsequently, Cytoscape was used to screen Hub genes, in which,6 core molecules, including AKT1, IL6, VEGFA, CASP3, JUN and MMP9 were recognized. Furthermore, we constructed Six core compounds by " disease-drug-active ingredient-target-KEGG " (D-D-A-T-K) network, showed including quercetin, luteolin, β sitosterol, stigmasterol, kaempferol and formononetin, and PPI protein network interaction showed that AKT1:OS3 and CNA2:DKN1A had the highest correlation. Whereas the enrichment of GO and KEGG indicated that LTG was most likely to play a therapeutic role in ICH through AGE-RAGE signaling pathway in diabetic complications. Integrated analysis also showed that the first 10 pathways of KEGG are integrated into 59 genes, among which 6 core genes are closely involved. Lastly, molecular docking showed that there was a good binding activity between the core components and the core genes, and animal experiments confirmed effect of LTG in the treatment of ICH, by using TTC staining and behavior test. Conclusion LTG are effective for the treatment of ICH, the underlying mechanism could be involved in gene network including anti-inflammatory response, nerve repair, analgesia, anti-epilepsy and other aspects.

Funder

The Science and Technology Major Project of Sichuan Province

Kunming Science and Technology Plan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long non-coding RNAs influence aging process of sciatic nerves in SD rats;Combinatorial Chemistry & High Throughput Screening;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3