Short-term responses of small mammal diversity to varying stand-scale patterns of retention tree patches

Author:

Sultaire Sean M.ORCID,Kroll Andrew J.,Verschuyl JakeORCID,Roloff Gary J.

Abstract

Retention forestry is a common practice for biodiversity conservation in forests managed for wood production. Retention forestry often leaves unharvested patches of trees that vary in size and spatial pattern but experiments evaluating the effects of different retention patch configurations at a constant level of retention are lacking for many regions and taxonomic groups. We implemented an experimental study in clearcut conifer stands with retention across the U.S. Pacific Northwest region. The study consisted of five stand-level (11–55 ha) experimental treatments each replicated 10 times within a randomized complete block design, resulting in 50 treated stands. Retained tree density was comparable across treatments but size, number, and location (upland or riparian) of patches within stands varied among the five treatments. Within experimental treatments, we measured small mammal (<1kg) species and functional trait (i.e., body size, diet, activity stratum) richness in retention patches, surrounding harvested portions of stands, and nearby unharvested stands. We evaluated species and functional trait richness by treatment using generalized linear mixed-effects models and species-specific responses to retention placement using a community occupancy model. We obtained repeat captures of 21 species of small mammals but found limited evidence of a treatment effect on species richness, and no differences in functional trait richness. Species richness was highest where all retained trees were aggregated into one patch placed adjacent to a forested riparian buffer (mean = 6.6 species, 95% CI = 5.7–7.5), and lowest in the treatment containing one retention patch in the upland portion of a harvested stand (mean = 4.7 species, 95% CI = 3.8–5.6). Furthermore, estimates of species richness within retention patches of harvested stands (i.e., not considering species in harvested areas) did not differ among treatments, indicating that the slightly elevated species richness in riparian-associated retention results from 1–2 species in these patches that do not occur in adjacent harvested portions of each treated stand. Patch occupancy of several species was higher in riparian patches than harvested portions of the treated stands, and fewer species had higher occupancy in upland patches compared to harvested portions of treated stands. Our results indicated that at retention densities currently required in Oregon and Washington, the location of retention patches had a small influence on stand-scale measures of small mammal diversity, but local increases in species richness may be obtained by retaining trees adjacent to riparian buffers.

Funder

National Council for Air and Stream Improvement Inc

Weyerhaeuser Company

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Plantation forests and biodiversity: Oxymoron or opportunity?;EG Brockerhoff;Biodiversity and Conservation,2008

2. Forest Ecology and Management Tamm review: Terrestrial vertebrate biodiversity and intensive forest management in the U;S Demarais;S. Forest Ecology and Management,2017

3. Forest plantations and biodiversity: A fresh perspective;SS Stephens;Journal of Forestry,2007

4. The forgotten stage of forest succession: Early-successional ecosystems on forest sites;ME Swanson;Frontiers in Ecology and the Environment,2011

5. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues;DB Lindenmayer;Conservation Letters,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3