Understanding the self-assembly dynamics of A/T absent ‘four-way DNA junctions with sticky ends’ at altered physiological conditions through molecular dynamics simulations

Author:

Singh Akanksha,Yadav Ramesh Kumar,Shati Ali,Kamboj Nitin Kumar,Hasssan Hesham,Bharadwaj ShivORCID,Rana Rashmi,Yadava UmeshORCID

Abstract

Elucidation of structure and dynamics of alternative higher-order structures of DNA such as in branched form could be targeted for therapeutics designing. Herein, we are reporting the intrinsically dynamic and folds transitions of an unusual DNA junction with sequence d(CGGCGGCCGC)4 which self-assembles into a four-way DNA junction form with sticky ends using long interval molecular simulations under various artificial physiological conditions. The original crystal structure coordinates (PDB ID: 3Q5C) for the selected DNA junction was considered for a total of 1.1 μs molecular dynamics simulation interval, including different temperature and pH, under OPLS-2005 force field using DESMOND suite. Following, post-dynamics structure parameters for the DNA junction were calculated and analyzed by comparison to the crystal structure. We show here that the self-assembly dynamics of DNA junction is mitigated by the temperature and pH sensitivities, and discloses peculiar structural properties as function of time. From this study it can be concluded on account of temperature sensitive and pH dependent behaviours, DNA junction periodic arrangements can willingly be synthesized and redeveloped for multiple uses like genetic biomarkers, DNA biosensor, DNA nanotechnology, DNA Zipper, etc. Furthermore, the pH dis-regulation behaviour may be used to trigger the functionality of DNA made drug–releasing nanomachines.

Funder

Deanship of Scientific Research (DSR), King Khalid University

Department of Research, Sir Ganga Ram Hospital, New Delhi

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3