Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components

Author:

Cobos Santiago FabianORCID,Norley Christopher James,Pollmann Steven Ingo,Holdsworth David Wayne

Abstract

Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts–including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomedical applications prohibitively expensive. This study describes the design, manufacturing, and implementation of a cost-effective scanner tailored for NDT of medium-size titanium 3D printed biomedical components. The main elements of the scanner; which include a low-energy (80 kVp) portable x-ray unit, and a low-cost lens-coupled detector; can be acquired with a budget less than $ 11000 USD. The low-cost detector system uses a rare-earth phosphor screen, lens-coupled to a dSLR camera (Nikon D800) in a front-lit tilted configuration. This strategy takes advantage of the improved light-sensitivity of modern full-frame CMOS camera sensors and minimizes source-to-detector distance to maximize x-ray flux. The imaging performance of the system is characterized using a comprehensive CT quality-assurance phantom, and two titanium 3D-printed test specimens. Results show that the cost-effective scanner can survey the porosity and cracks in titanium parts with thicknesses of up to 13 mm of solid metal. Quantitatively, the scanner produced geometrically stable reconstructions, with a voxel size of 118 μm, and noise levels under 55 HU. The cost-effective scanner was able to estimate the porosity of a 17 mm diameter titanium 3D-printed cylindrical lattice structure, with a 0.3% relative error. The proposed scanner will facilitate the implementation of titanium LPBF-printed components for biomedical applications by incorporating routine cost-effective NDT as part of the process control and validation steps of medical-device quality-management systems. By reducing the cost of the x-ray detector and shielding, the scan cost will be commensurate with the overall cost of the validated component.

Funder

Canadian Institutes of Health Research

Ontario Research Fund Research Excellence

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. X-ray microtomography of materials;S. Stock;International materials reviews,1999

2. X-ray computed tomography;PJ Withers;Nature Reviews Methods Primers,2021

3. Industrial applications of computed tomography;L De Chiffre;CIRP annals,2014

4. Progress in Digital Industrial Radiology. Pt. 2, Computed tomography (CT);U Ewert;Badania Nieniszczące i Diagnostyka,2017

5. Review of high-speed imaging with lab-based x-ray computed tomography;E Zwanenburg;Measurement Science and Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3