Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.)

Author:

Xu Ningwei,Wu Zhenxing,Li Xiangling,Yang Min,Han Jinling,Lu Bin,Lu Bingshe,Wang JianORCID

Abstract

The sulfonylurea herbicide nicosulfuron is efficient, harmless and selective at low doses and has been widely used in maize cultivation. In this study, a pair of corn sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was chosen to study the effect of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.) seedlings. All the experimental samples were subjected to treatment with water or 80 mg kg–1 of nicosulfuron when the sweet maize seedlings grew to the four-leaf stage. Nicosulfuron significantly inhibited the growth of NS line. The content of sucrose and the activities of sucrose phosphate synthase and sucrose synthase in the two inbred lines increased differentially under nicosulfuron stress compared with the respective control treatment. After nicosulfuron treatment, the activities of hexokinase and 6-phosphofructokinase and the contents of pyruvic acid and citric acid in NS line decreased significantly compared with those of NT line, while the content of sucrose and activities of sucrose phosphate synthase and sucrose synthase increased significantly. The disruption of sugar metabolism in NS line led to a lower supply of energy for growth. This study showed that the glycolysis pathway and the tricarboxylic acid cycle were enhanced in nicosulfuron-tolerant line under nicosulfuron stress in enhancing the adaptability of sweet maize.

Funder

Natural Science Foundation of Hebei Province

Science and Technology Program of Zhejiang Province

Shanghai Engineering Research Center for Food Safety

Hebei Normal University of Science and Technology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3