Semantic segmentation method of underwater images based on encoder-decoder architecture

Author:

Wang JinkangORCID,He XiaohuiORCID,Shao Faming,Lu Guanlin,Hu Ruizhe,Jiang Qunyan

Abstract

With the exploration and development of marine resources, deep learning is more and more widely used in underwater image processing. However, the quality of the original underwater images is so low that traditional semantic segmentation methods obtain poor segmentation results, such as blurred target edges, insufficient segmentation accuracy, and poor regional boundary segmentation effects. To solve these problems, this paper proposes a semantic segmentation method for underwater images. Firstly, the image enhancement based on multi-spatial transformation is performed to improve the quality of the original images, which is not common in other advanced semantic segmentation methods. Then, the densely connected hybrid atrous convolution effectively expands the receptive field and slows down the speed of resolution reduction. Next, the cascaded atrous convolutional spatial pyramid pooling module integrates boundary features of different scales to enrich target details. Finally, the context information aggregation decoder fuses the features of the shallow network and the deep network to extract rich contextual information, which greatly reduces information loss. The proposed method was evaluated on RUIE, HabCam UID, and UIEBD. Compared with the state-of-the-art semantic segmentation algorithms, the proposed method has advantages in segmentation integrity, location accuracy, boundary clarity, and detail in subjective perception. On the objective data, the proposed method achieves the highest MIOU of 68.3 and OA of 79.4, and it has a low resource consumption. Besides, the ablation experiment also verifies the effectiveness of our method.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3