Using runaway replication to express polyhydroxyalkanoic acid (pha) genes from a novel marine bacterium in enteric bacteria: The influence of temperature and phasins on PHA accumulation

Author:

Kolibachuk DanaORCID,Ryder Benjamin J.,Lyons Edward R.,Woolsey Ariel,Lopes Margaret K.,Thakkar Keya,Pacheco Nunez Mayelin,Duquenoy Michaela,Valente Nevan R.,Nieves Ashley

Abstract

While plastics have revolutionized our world, plastic waste has serious environmental and economic impacts. Polyhydroxyalkanoic acid (PHA) is a bacterial carbon and energy reserve shown to be both biodegradable and biocompatible and could potentially replace conventional plastics. However, cost-effective mass production remains elusive. Bacteria often accumulate PHA as cytoplasmic granules. PHA synthase creates the PHA polymer from acetoacyl-CoA monomers, while phasins are small multifunctional proteins that are found in abundance on the granule surface. The PHA synthase gene from a novel marine isolate, Vibrio B-18 (or B-18), was placed in the presence or absence of an upstream phasin gene in a runaway replication plasmid using polymerase chain reaction (PCR) technology. Plasmid gene expression may be induced chemically or thermally. Overexpression of the PHA genes was demonstrated by SDS-PAGE analysis, and microscopy was used to detect PHA accumulation in three different enteric bacteria (Escherichia coli, Klebsiella aerogenes, and Shigella flexneri). While the B-18 genes were clearly overexpressed at 41°C, PHA accumulation occurred more readily at the lower (30°C) non-inducing temperature regardless of chemical induction if the phasin gene was present. A mutational analysis confirmed the identity of the start codon for the PHA synthase gene and provided evidence supporting the requirement for phasins to allow for PHA accumulation in the recombinant hosts. The findings described in this study confirm the conclusions obtained from related studies from other laboratories and lend support to the importance of including a phasin gene in addition to the basic genes needed for PHA synthesis and accumulation in recombinant enteric bacteria, such as Escherichia coli, Klebsiella aerogenes, and Shigella flexneri.

Funder

Rhode Island College Faculty Scholarship and Development Committee

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3