Development of a customized mask retainer for improving the fit performance of surgical masks

Author:

Pan Yuanyuan,Xi Qi,Meng Jiali,Chen Xi,Wu GuofengORCID

Abstract

This study introduces a customized mask retainer to improve the fit performance of surgical masks using various advanced digital techniques. The participant’s 3D face scans with and without a surgical mask were taken by using a smartphone. The mask retainer was designed using the 3D face scan data based on the facial anthropometric landmarks. The fitting was inspected and adjusted using the masked face scan data. The retainer was fabricated using a 3D printer. The effectiveness of the retainer on the augmentation of the fit of the surgical mask was tested according to the Chinese Standard (GB 19083–2010). A questionnaire was used to assess the effect of wearing surgical masks with and without retainers and N95 respirators on subjective perception of discomfort. The effectiveness test of the retainer on the augmentation of the fit performance showed a better than 25-fold increase in the overall fit factor, meeting the fit requirement for KN95 respirators in China. The subjective perception of discomfort of wearing N95 was significantly greater than surgical mask with and without retainers. The fit factor results indicated that by using the retainer, the overall fit factors and that of each exercise significantly increased compared to that of the group with the surgical mask alone. And compared with N95, the surgical mask with the retainer significant improved comfort. The surgical mask with the retainer can provide an alternative of personal protective equipment for healthcare workers.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A video-based method for supporting automated facial mask customization;The International Journal of Advanced Manufacturing Technology;2024-06-09

2. Biomimetic Design to Support the Design of Individual Protection Device;Springer Series in Design and Innovation;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3