Abstract
BackgroundSuppression of cardiac iinflammasome, which can be inhibited by Farnesoid X receptor (FXR) agonist, can ameliorate cardiac inflammation and fibrosis. Increased cardiac inflammasome decrease the abundance of regulatory T (Treg) cells and exacerbate cardiac dysfunction. Interaction between cardiomyocytes and Treg cells is involved in the development of nonalcoholic steatohepatitis (NASH)-related cardiac dysfunction.AimsThis study evaluates whether the FXR agonist obeticholic acid (OCA) treatment improves NASH-associated cardiac dysfunction.MethodsThein vivoandin vitromechanisms and effects of two weeks of OCA treatment oninflammasome and Treg dysregulation-related cardiac dysfunction in NASH mice (NASH-OCA) at systemic, tissue and cellular levels were investigated.ResultsThe OCA treatment suppressed the serum and cardiac inflammasome levels, reduced the cardiac infiltrated CD3+T cells, increased the cardiac Treg-represented anti-inflammatory cytokines (IL-10/IL-10R) and improved cardiac inflammation, fibrosis and function [decreased left ventricle (LV) mass and increased fractional shortening (FS)] in NASH-OCA mice. The percentages of OCA-decreased cardiac fibrosis and OCA-increased FS were positively correlated with the percentage of OCA-increased levels of cardiac FXR and IL-10/IL-10R. In the Treg cells from NASH-OCA mice spleen, in comparison with the Treg cells of the NASH group, higher intracellular FXR but lower inflammasome levels, and more proliferative/active and less apoptotic cells were observed. Incubation of H9c2 cardiomyoblasts with Treg-NASHcm [supernatant of Treg from NASH mice as condition medium (cm)], increased inflammasome levels, decreased the proliferative/active cells, suppressed the intracellular FXR, and downregulated differentiation/contraction marker. The Treg-NASHcm-induced hypocontractility of H9c2 can be attenuated by co-incubation with OCA, and the OCA-related effects were abolished by siIL-10R pretreatment.ConclusionsChronic FXR activation with OCA is a potential strategy for activating IL-10/IL-10R signalling, reversing cardiac regulatory T cell dysfunction, and improving inflammasome-mediated NASH-related cardiac dysfunction.
Funder
Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan
Taipei Veterans General Hospital
National Chiao Tung University
Ministry of education
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献