Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development

Author:

Griess OfirORCID,Domb Katherine,Katz Aviva,Harris Keith D.,Heskiau Karina G.,Ohad Nir,Zemach AssafORCID

Abstract

The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss,Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 inP.patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated inPpddm1. Finally,Ppddm1was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a non-flowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent.

Funder

Israel Science Foundation

HORIZON EUROPE European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3