COVID-19 masks increase the influence of face recognition algorithm decisions on human decisions in unfamiliar face matching

Author:

Barragan Daniela,Howard John J.,Rabbitt Laura R.ORCID,Sirotin Yevgeniy B.ORCID

Abstract

Face masks, recently adopted to reduce the spread of COVID-19, have had the unintended consequence of increasing the difficulty of face recognition. In security applications, face recognition algorithms are used to identify individuals and present results for human review. This combination of human and algorithm capabilities, known as human-algorithm teaming, is intended to improve total system performance. However, prior work has shown that human judgments of face pair similarity-confidence can be biased by an algorithm’s decision even in the case of an error by that algorithm. This can reduce team effectiveness, particularly for difficult face pairs. We conducted two studies to examine whether face masks, now routinely present in security applications, impact the degree to which this cognitive bias is experienced by humans. We first compared the influence of algorithm’s decisions on human similarity-confidence ratings in the presence and absence of face masks and found that face masks more than doubled the influence of algorithm decisions on human similarity-confidence ratings. We then investigated if this increase in cognitive bias was dependent on perceived algorithm accuracy by also presenting algorithm accuracy rates in the presence of face masks. We found that making humans aware of the potential for algorithm errors mitigated the increase in cognitive bias due to face masks. Our findings suggest that humans reviewing face recognition algorithm decisions should be made aware of the potential for algorithm errors to improve human-algorithm team performance.

Funder

Department of Homeland Security, Science and Technology Directorate

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3