GW-2974 and SCH-442416 modulators of tyrosine kinase and adenosine receptors can also stabilize human telomeric G-quadruplex DNA

Author:

Salem Alaa A.ORCID,El Haty Ismail A.,Ghattas Mohammad A.ORCID

Abstract

GW-2974 is a potent tyrosine kinase receptor inhibitor while SCH-442416 is a potent adenosine receptors’ antagonist with high selectivity towards human adenosine A2A receptor over other adenosine receptors. The two compounds were reported to possess anti-cancer properties. This study aimed to investigate whether stabilization of human telomeric G-quadruplex DNA by GW-2974- and SCH-442416 is a plausible fundamental mechanism underlying their anti-cancer effects. Human telomeric G-quadruplex DNA with sequence AG3(TTAGGG)3 was used. The study used ultraviolet-visible (UV-Vis), fluorescence, fluorescence quenching, circular dichroism (CD), melting temperatures (Tm) and molecular docking techniques to evaluate interactions. The results showed that GW-2974 and SCH-442416 interacted with G-quadruplex DNA through intercalation binding into two types of dependent binding sites. Binding affinities of 1.3 × 108–1.72 × 106 M−1 and 1.55 × 107–3.74 × 105 M−1 were obtained for GW-2974 and SCH-442416, respectively. An average number of binding sites between 1 and 2 was obtained. Additionally, the melting temperature curves indicated that complexation of both compounds to G-quadruplex DNA provided more stability (ΔTm = 9.9°C and 9.6°C, respectively) compared to non-complexed G-quadruplex DNA. Increasing the molar ratios over 1:1 (drug:G-quadruplex) showed less stabilization effect on DNA. Furthermore, GW-2974 and SCH-442516 have proven ≥ 4.0 folds better selective towards G-quadruplex over double-stranded ct-DNA. In silico molecular docking and dynamics revealed favorable exothermic binding for the two compounds into two sites of parallel and hybrid G-quadruplex DNA structures. The results supported the hypothesis that GW-2974 and SCH-442416 firmly stabilize human telomeric G-quadruplex DNA in additions to modulating tyrosine kinase and adenosine receptors. Consequently, stabilizing G-quadruplex DNA could be a mechanism underlying their anti-cancer activity.

Funder

United Arab Emirates University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference78 articles.

1. The characterization of novel, Dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer;D.W. Rusnak;Cancer Research,2001

2. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and c-erbB-2;S. Cockerill;Bioorg. Med. Chem. Lett,2001

3. Differential effects of low- and high-dose GW2974, a dual epidermal growth factor receptor and HER2 kinase inhibitor, on glioblastoma multiforme invasion;L. Wang;J. Neurosci. Res,2013

4. Chemopreventive and therapeutic efficacy of orally active tyrosine kinase inhibitors in a transgenic mouse model of gallbladder carcinoma;K. Kiguchi;Clin. Canc. Res,2005

5. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch by topical application of a dual inhibitor of epidermal growth factor receptor (EGFR) and ErbB2 tyrosine kinases;Z. Sun;Oral Oncol,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3