Effects of three regeneration methods on the growth and bacterial community diversity of Populus × euramericana

Author:

Fu Yanyan,Ding Changjun,Fan Jianmin,Li Yongtan,Yao Lizhu,Yang Minsheng,Su XiaohuaORCID,Wang JinmaoORCID

Abstract

To study the effects of different regeneration methods on the growth and bacterial community diversity of Populus × euramericana cv. ‘74/76’ (poplar 107), we investigated the growth of poplar 107 trees under three regeneration methods in 2017 and 2020, and sequenced the 16S rDNA V5–V7 regions in stem endophytic, root endophytic, and rhizosphere soil bacteria present in samples from the three regeneration methods using the Illumina high-throughput sequencing platform. The growth analysis showed that stump grafting regeneration (ST) and stump sprouting regeneration (SP) presented similar tree height and diameter at breast height (DBH), which were significantly lower by planted seedling regeneration (CK). The high-throughput sequencing results showed that the rhizosphere soil bacteria appeared to be significantly more diverse and rich than the root and stem endophytic bacteria. Cluster analysis showed that the similarity of bacterial community structure among the rhizosphere soil, root, and stem was small. Thus, the three sample types showed significant differences in bacteria. While comparing the two years, 2020 was significantly more diverse and rich than 2017. With the increase in stand age, the abundance of Proteobacteria increased and the abundance of Acidobacteria decreased. Among the three regeneration methods, ST significantly increased the diversity of stem endophytic bacteria. Chthoniobacter was enriched in SP, which promoted the decomposition of organic matter, and more plant growth promoting rhizobacteria (PGPR) were accumulated in the rhizosphere of SP and ST. The composition of the bacterial community was similar in the three regeneration methods, but the community composition was different. Regeneration and transformation of poplar plantations can be better carried out by stump grafting and stump sprouting.

Funder

The National Key Research and Development Program of China

Province Key Research and Development Program of HeBei

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference61 articles.

1. Physiological adaptations of five poplar genotypes grown under SRC in the semi-arid Mediterranean environment.;A Navarro;Trees-Struct Funct,2014

2. Benefit analysis of regeneration and transformation of poplar low-efficiency forest by stump grafting.;LJ Wu;Forest Resour Manag,2013

3. Comparison of growth and carbon storage of poplar stump grafting and seedling forest.;GH Li;Forest Res.,2013

4. The evolutionary ecology of sprouting in woody plants;WJ Bond;Int J Plant Sci,2003

5. Anatomical characteristics of the wood of stump grafted Populus tomentosa.;J Xu;J Northeast Forestry Univ,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3