Abstract
Smoke from Hazard Reduction Burns (HRBs) and wildfires contains pollutants that are harmful to human health. This includes particulate matter less than 2.5 μm in diameter (PM2.5), which affects human cardiovascular and respiratory systems and can lead to increased hospitalisations and premature deaths. Better models are needed to predict PM2.5 levels associated with HRBs so that agencies can properly assess smoke pollution risk and balance smoke risk with the wildfire mitigation benefits of HRBs. Given this need, our aim was to develop a probabilistic model of daily PM2.5 using Bayesian regression. We focused on the region around Sydney, Australia, which regularly has hazard reduction burning, wildfires and associated smoke. We developed two regional models (mean daily and maximum daily) from observed PM2.5, weather reanalysis and satellite fire hotspot data. The models predict that the worst PM2.5 in Sydney occurs when PM2.5 was high the previous day, there is low ventilation index (i.e. the product of wind speed and planetary boundary layer height), low temperature, west to northwest winds in the Blue Mountains, an afternoon sea breeze and large areas of HRBs are being conducted, particularly to the west and north of Sydney. A major benefit of our approach is that models are fast to run, require simple inputs and Bayesian predictions convey both predicted PM2.5 and associated prediction uncertainty. Future research could include the application of similar methods to other regions, collecting more data to improve model precision and developing Bayesian PM2.5 models for wildfires.
Funder
NSW Department of Planning,Industry and Environment
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献