Prediction of air quality in Sydney, Australia as a function of forest fire load and weather using Bayesian statistics

Author:

Storey Michael AnthonyORCID,Price Owen F.

Abstract

Smoke from Hazard Reduction Burns (HRBs) and wildfires contains pollutants that are harmful to human health. This includes particulate matter less than 2.5 μm in diameter (PM2.5), which affects human cardiovascular and respiratory systems and can lead to increased hospitalisations and premature deaths. Better models are needed to predict PM2.5 levels associated with HRBs so that agencies can properly assess smoke pollution risk and balance smoke risk with the wildfire mitigation benefits of HRBs. Given this need, our aim was to develop a probabilistic model of daily PM2.5 using Bayesian regression. We focused on the region around Sydney, Australia, which regularly has hazard reduction burning, wildfires and associated smoke. We developed two regional models (mean daily and maximum daily) from observed PM2.5, weather reanalysis and satellite fire hotspot data. The models predict that the worst PM2.5 in Sydney occurs when PM2.5 was high the previous day, there is low ventilation index (i.e. the product of wind speed and planetary boundary layer height), low temperature, west to northwest winds in the Blue Mountains, an afternoon sea breeze and large areas of HRBs are being conducted, particularly to the west and north of Sydney. A major benefit of our approach is that models are fast to run, require simple inputs and Bayesian predictions convey both predicted PM2.5 and associated prediction uncertainty. Future research could include the application of similar methods to other regions, collecting more data to improve model precision and developing Bayesian PM2.5 models for wildfires.

Funder

NSW Department of Planning,Industry and Environment

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3