Assembling a safe and effective toolbox for integrated flea control and plague mitigation: Fipronil experiments with prairie dogs

Author:

Eads DavidORCID,Livieri TravisORCID,Tretten Tyler,Hughes John,Kaczor Nick,Halsell Emily,Grassel Shaun,Dobesh Phillip,Childers Eddie,Lucas David,Noble Lauren,Vasquez Michele,Grady Anna CatherineORCID,Biggins Dean

Abstract

Background Plague, a widely distributed zoonotic disease of mammalian hosts and flea vectors, poses a significant risk to ecosystems throughout much of Earth. Conservation biologists use insecticides for flea control and plague mitigation. Here, we evaluate the use of an insecticide grain bait, laced with 0.005% fipronil (FIP) by weight, with black-tailed prairie dogs (BTPDs, Cynomys ludovicianus). We consider safety measures, flea control, BTPD body condition, BTPD survival, efficacy of plague mitigation, and the speed of FIP grain application vs. infusing BTPD burrows with insecticide dusts. We also explore conservation implications for endangered black-footed ferrets (Mustela nigripes), which are specialized predators of Cynomys. Principal findings During 5- and 10-day laboratory trials in Colorado, USA, 2016–2017, FIP grain had no detectable acute toxic effect on 20 BTPDs that readily consumed the grain. During field experiments in South Dakota, USA, 2016–2020, FIP grain suppressed fleas on BTPDs for at least 12 months and up to 24 months in many cases; short-term flea control on a few sites was poor for unknown reasons. In an area of South Dakota where plague circulation appeared low or absent, FIP grain had no detectable effect, positive or negative, on BTPD survival. Experimental results suggest FIP grain may have improved BTPD body condition (mass:foot) and reproduction (juveniles:adults). During a 2019 plague epizootic in Colorado, BTPDs on 238 ha habitat were protected by FIP grain, whereas BTPDs were nearly eliminated on non-treated habitat. Applications of FIP grain were 2–4 times faster than dusting BTPD burrows. Significance Deltamethrin dust is the most commonly used insecticide for plague mitigation on Cynomys colonies. Fleas on BTPD colonies exhibit the ability to evolve resistance to deltamethrin after repeated annual treatments. Thus, more tools are needed. Accumulating data show orally-delivered FIP is safe and usually effective for flea control with BTPDs, though potential acute toxic effects cannot be ruled out. With continued study and refinement, FIP might be used in rotation with, or even replace deltamethrin, and serve an important role in Cynomys and black-footed ferret conservation. More broadly, our stepwise approach to research on FIP may function as a template or guide for evaluations of insecticides in the context of wildlife conservation.

Funder

National Park Service

U.S. Fish and Wildlife Service

U.S. Geological Survey

Prairie Wildlife Research

Northern Research Station

Colorado State University

Lower Brule Indian Reservation

World Wildlife Fund

National Fish and Wildlife Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. Plague reservoir species throughout the world;A Mahmoudi;Integrative Zoology,2020

2. Influences of introduced plague on North American mammals: implications from ecology of plague in Asia;DE Biggins;Journal of Mammalogy,2001

3. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America;DA Eads;Conservation Biology,2015

4. Living with plague: Lessons from the Soviet Union’s antiplague system;SD Jones;Proceedings of the National Academy of Sciences,2019

5. Plague: bridging gaps towards better disease control;E D’ortenzio;Medecine et Maladies Infectieuses,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3