Air-conducted ultrasound below the hearing threshold elicits functional changes in the cognitive control network

Author:

Weichenberger MarkusORCID,Bug Marion U.,Brühl Rüdiger,Ittermann Bernd,Koch Christian,Kühn Simone

Abstract

Air-conducted ultrasound (> 17.8 kHz; US) is produced by an increasing number of technical devices in our daily environment. While several studies indicate that exposure to US in public spaces can lead to subjective symptoms such as ‘annoyance’ or ‘difficulties in concentration’, the effects of US on brain activity are poorly understood. In the present study, individual hearing thresholds (HT) for sounds in the US frequency spectrum were assessed in 21 normal-hearing participants. The effects of US were then investigated by means of functional magnetic resonance imaging (fMRI). 15 of these participants underwent three resting-state acquisitions, two with a 21.5 kHz tone presented monaurally at 5 dB above (ATC) and 10 dB below (BTC) the HT and one without auditory stimulation (NTC), as well as three runs of an n-back working memory task involving similar stimulus conditions (n-ATC, n-BTC, n-NTC). Comparing data gathered during n-NTC vs. fixation, we found that task performance was associated with the recruitment of regions within the cognitive control network, including prefrontal and parietal areas as well as the cerebellum. Direct contrasts of the two stimulus conditions (n-ATC & n-BTC) vs. n-NTC showed no significant differences in brain activity, irrespective of whether a whole-brain or a region of interest approach with primary auditory cortex as the seed was used. Likewise, no differences were found when the resting-state runs were compared. However, contrast analysis (n-BTC vs. n-ATC) revealed a strong activation in bilateral inferior frontal gyrus (IFG, triangular part) only when US was presented below the HT (p < 0.001, cluster > 30). In addition, IFG activation was also associated with faster reaction times during n-BTC (p = 0.033) as well as with verbal reports obtained after resting-state, i.e., the more unpleasant sound was perceived during BTC vs. ATC, the higher activation in bilateral IFG was and vice versa (p = 0.003). While this study provides no evidence for activation of primary auditory cortex in response to audible US (even though participants heard the sounds), it indicates that US can lead to changes in the cognitive control network and affect cognitive performance only when presented below the HT. Activation of bilateral IFG could reflect an increase in cognitive demand when focusing on task performance in the presence of slightly unpleasant and/or distracting US that may not be fully controllable by attentional mechanisms.

Funder

European Metrology Programme for Innovation and Research

Horizon 2020 Framework Programme

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference98 articles.

1. Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?;T.G. Leighton;Proc. Math. Phys. Eng. Sci,2016

2. Public exposure to ultrasound and very high-frequency sound in air;M.D. Fletcher;J. Acoust. Soc. Am,2018

3. Ultrasound in air—Experimental studies of the underlying physics are difficult when the only sensors reporting contemporaneous data are human beings;T.G. Leighton;Phys. Today,2020

4. Public Exposure to airborne ultrasound and Very High Frequency sound;T.G. Leighton;Acoust. Today,2020

5. Ultrasonic surveillance monitoring of PA systems, a safety feature or audible hazard?;P. Mapp;Proc. Inst. Acoust,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3