Gelatin coating enhances therapeutic cell adhesion to the infarcted myocardium via ECM binding

Author:

Davis Kara A.ORCID,Gottipatti Anuhya,Peng Hsuan,Donahue Renee,Chelvarajan Lakshman,Cahall Calvin,Tripathi Himi,Al-Darraji Ahmed,Ye Shaojing,Abdel-Latif Ahmed,Berron Brad J.ORCID

Abstract

Acute myocardial infarction (AMI) results in weakening of the heart muscle and an increased risk for chronic heart failure. Therapeutic stem cells have been shown to reduce inflammatory signaling and scar tissue expansion, despite most of these studies being limited by poor retention of cells. Gelatin methacrylate (GelMA) coatings have been shown to increase the retention of these therapeutic cells near the infarct. In this work, we evaluate two different potential binding partners for GelMA-coated bone marrow cells (BMCs) and myocardial tissue: the extracellular matrix (ECM) and interstitial non-cardiomyocytes. While cells containing β1 integrins mediate cell-ECM adhesion in vivo, these cells do not promote binding to our collagen-degraded, GelMA coating. Specifically, microscopic imagining shows that even with high integrin expression, GelMA-coated BMCs do not bind to cells within the myocardium. Alternatively, BMC incubation with decellularized heart tissue results in higher adhesion of coated cells versus uncoated cells supporting our GelMA-ECM binding mode. To further evaluate the ECM binding mode, cells were incubated on slides modified with one of three different major heart ECM components: collagen, laminin, or fibronectin. While all three components promoted higher adhesion than unmodified glass, collagen-coated slides resulted in a significantly higher adhesion of GelMA-coated BMCs over laminin and fibronectin. Incubation with unmodified BMCs confirmed that without a GelMA coating minimal adhesion of BMCs occurred. We conclude that GelMA cellular coatings significantly increase the binding of cells to collagen within the ECM. Our results provide progress towards a biocompatible and easily translatable method to enhance the retention of transplanted cells in human studies.

Funder

Foundation for the National Institutes of Health

National Science Foundation

American Heart Association

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Heart disease and stroke statistics—2019 update: a report from the American Heart Association.;EJ Benjamin;Heart disease and stroke statistics—2019 update: a report from the American Heart Association.,2019

2. Heart disease and stroke statistics-2017 update: a report from the American Heart Association.;EJ Benjamin;Heart disease and stroke statistics-2017 update: a report from the American Heart Association.,2017

3. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials;MR Afzal;Circ Res,2015

4. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity;HC Quevedo;Proc Natl Acad Sci U S A,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3