Modelling the impacts of COVID-19 on nurse workload and quality of care using process simulation

Author:

Qureshi Sadeem MunawarORCID,Bookey-Bassett Sue,Purdy NancyORCID,Greig Michael A.ORCID,Kelly Helen,Neumann W. PatrickORCID

Abstract

Higher acuity levels in COVID-19 patients and increased infection prevention and control routines have increased the work demands on nurses. To understand and quantify these changes, discrete event simulation (DES) was used to quantify the effects of varying the number of COVID-19 patient assignments on nurse workload and quality of care. Model testing was based on the usual nurse-patient ratio of 1:5 while varying the number of COVID-19 positive patients from 0 to 5. The model was validated by comparing outcomes to a step counter field study test with eight nurses. The DES model showed that nurse workload increased, and the quality of care deteriorated as nurses were assigned more COVID-19 positive patients. With five COVID-19 positive patients, the most demanding condition, the simulant-nurse donned and doffed personal protective equipment (PPE) 106 times a shift, totaling 6.1 hours. Direct care time was reduced to 3.4 hours (-64% change from baseline pre-pandemic case). In addition, nurses walked 10.5km (+46% increase from base pre-pandemic conditions) per shift while 75 care tasks (+242%), on average, were in the task queue. This contributed to 143 missed care tasks (+353% increase from base pre-pandemic conditions), equivalent to 9.6 hours (+311%) of missed care time and care task waiting time increased to 1.2 hours (+70%), in comparison to baseline (pre-pandemic) conditions. This process simulation approach may be used as potential decision support tools in the design and management of hospitals in-patient care settings, including pandemic planning scenarios.

Funder

Canadian Institutes of Health Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3