The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling approach

Author:

Bhattacharyay ShubhayuORCID,Milosevic Ioan,Wilson LindsayORCID,Menon David K.ORCID,Stevens Robert D.,Steyerberg Ewout W.,Nelson David W.,Ercole Ari,

Abstract

When a patient is admitted to the intensive care unit (ICU) after a traumatic brain injury (TBI), an early prognosis is essential for baseline risk adjustment and shared decision making. TBI outcomes are commonly categorised by the Glasgow Outcome Scale–Extended (GOSE) into eight, ordered levels of functional recovery at 6 months after injury. Existing ICU prognostic models predict binary outcomes at a certain threshold of GOSE (e.g., prediction of survival [GOSE > 1]). We aimed to develop ordinal prediction models that concurrently predict probabilities of each GOSE score. From a prospective cohort (n = 1,550, 65 centres) in the ICU stratum of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) patient dataset, we extracted all clinical information within 24 hours of ICU admission (1,151 predictors) and 6-month GOSE scores. We analysed the effect of two design elements on ordinal model performance: (1) the baseline predictor set, ranging from a concise set of ten validated predictors to a token-embedded representation of all possible predictors, and (2) the modelling strategy, from ordinal logistic regression to multinomial deep learning. With repeated k-fold cross-validation, we found that expanding the baseline predictor set significantly improved ordinal prediction performance while increasing analytical complexity did not. Half of these gains could be achieved with the addition of eight high-impact predictors to the concise set. At best, ordinal models achieved 0.76 (95% CI: 0.74–0.77) ordinal discrimination ability (ordinal c-index) and 57% (95% CI: 54%– 60%) explanation of ordinal variation in 6-month GOSE (Somers’ Dxy). Model performance and the effect of expanding the predictor set decreased at higher GOSE thresholds, indicating the difficulty of predicting better functional outcomes shortly after ICU admission. Our results motivate the search for informative predictors that improve confidence in prognosis of higher GOSE and the development of ordinal dynamic prediction models.

Funder

Gates Cambridge Trust

National Institute for Health Research

FP7 Health

Engineering and Physical Sciences Research Council

ZNS - Hannelore Kohl Stiftung

One Mind

Integra LifeSciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3