Using a substitute species to inform translocation of an endangered territorial mammal

Author:

Morandini MarinaORCID,Koprowski John L.

Abstract

Substitute species can inform management strategies without exposing endangered species to unacceptable risk. Furthermore, experimental approaches may help to identify the causes of translocation failures, improving the chances of success. We used a surrogate subspecies, Tamiasciurus fremonti fremonti to test different translocation techniques to inform on potential management actions with regards to the endangered Mt. Graham red squirrel (Tamiasciurus fremonti grahamensis). Individuals of both subspecies defend year-round territories in similar mixed conifer forests at elevations between 2650–2750 m, where they store cones to survive over winter. We fitted VHF radio collars to 54 animals, and we monitored their survival and movements until individuals settled on a new territory. We considered the effect of season, translocation technique (soft or hard release), and body mass on survival, distance moved after release, and time to settlement of translocated animals. Survival probability averaged 0.48 after 60 days from the translocation event and was not affected by season or translocation technique. 54% of the mortality was caused by predation. Distance moved and number of days to settlement varied with season, where winter was characterized by shorter distances (average of 364 m in winter versus 1752 m in fall) and a smaller number of days (6 in winter versus 23 in fall). The data emphasized on the potential of substitute species to provide valuable information for possible outcomes of management strategies to closely related endangered species.

Funder

Arizona Game and Fish Department

T & E Inc. Grants for Conservation Biology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference72 articles.

1. Integrating conservation and restoration in a changing world;JA Wiens;BioScience,2015

2. How to improve threatened species management: an australian perspective;BC Scheele;J Environ Manage,2018

3. IUCN. The IUCN Red List of Threatened Species. 2021.

4. Inbreeding depression in conservation biology;PW Hedrick;Annu Rev Ecol Syst,2000

5. Quantifying temporal genomic erosion in endangered species;D Díez-del-Molino;Trends Ecol Evol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3