Comparison of kinematic parameters of children gait obtained by inverse and direct models

Author:

Ziziene JurgitaORCID,Daunoraviciene Kristina,Juskeniene Giedre,Raistenskis Juozas

Abstract

The purpose of this study is to compare differences between kinematic parameters of pediatric gait obtained by direct kinematics (DK) (Plug-in-Gait) and inverse kinematics (IK) (AnyBody) models. Seventeen healthy children participated in this study. Both lower extremities were examined using a Vicon 8-camera motion capture system and a force plate. Angles of the hip, knee, and ankle joints were obtained based on DK and IK models, and ranges of motion (ROMs) were identified from them. The standard error of measurement, root-mean-squared error, correlation r, and magnitude-phase (MP) metrics were calculated to compare differences between the models’ outcomes. The determined standard error of measurement between ROMs from the DK and IK models ranged from 0.34° to 0.58°. A significant difference was found in the ROMs with the exception of the left hip’s internal/external rotation. The mean RMSE of all joints’ amplitudes exceeded the clinical significance limit and was 13.6 ± 4.0°. The best curve angles matching nature were found in the sagittal plane, where r was 0.79 to 0.83 and MP metrics were 0.05 to 0.30. The kinematic parameters of pediatric gait obtained by IK and DK differ significantly. Preferably, all of the results obtained by DK must be validated/verified by IK, in order to achieve a more accurate functional assessment of the individual. Furthermore, the use of IK expands the capabilities of gait analysis and allows for kinetic characterisation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

1. Research of the spatial-temporal gait parameters and pressure characteristic in spastic diplegia children;J Pauk;Acta Bioeng Biomech Orig Pap,2016

2. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review;D Kobsar;Sensors 2020, Vol 20, Page 7143,2020

3. A gait analysis data collection and reduction technique;RB Davis;Hum Mov Sci,1991

4. Measurement of lower extremity kinematics during level walking;MP Kadaba;J Orthop Res,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3