Abstract
Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families. Proportional cover and richness of C4 species were determined at 541 one-hectare plots across Australia for 14 families. C4 cover and richness of the most common and abundant families were regressed against climate and local parameters. C4 richness and cover in the monocot families Poaceae and Cyperaceae increased with latitude and were strongly positively correlated with January temperatures, however C4 Cyperaceae occupied a more restricted temperature range. Seasonal rainfall, soil pH, soil texture, and tree cover modified proportional C4 cover in both families. Eudicot families displayed considerable variation in C4 distribution patterns. Proportional C4 Euphorbiaceae richness and cover were negatively correlated with increased moisture availability (i.e. high rainfall and low aridity), indicating they were more common in dry environments. Proportional C4 Chenopodiaceae richness and cover were weakly correlated with climate and local environmental factors, including soil texture. However, the explanatory power of C4 Chenopodiaceae models were poor, suggesting none of the factors considered in this study strongly influenced Chenopodiaceae distribution. Proportional C4 richness and cover in Aizoaceae, Amaranthaceae, and Portulacaceae increased with latitude, suggesting C4 cover and richness in these families increased with temperature and summer rainfall, but sample size was insufficient for regression analysis. Results demonstrate the unique relationships between different C4 taxa and climate, and the significant modifying effects of environmental factors on C4 distribution. Our work also revealed C4 families will not exhibit similar responses to local perturbations or climate.
Funder
University of Adelaide Faculty of Sciences Divisional scholarships
National Collaborative Research Infrastructure Strategy
AMP Tomorrow Fund
Australian Research Council Future Fellowship
Publisher
Public Library of Science (PLoS)
Reference75 articles.
1. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame;RF Sage;J Exp Bot,2016
2. Photorespiration: pathways, regulation, and modification;WL Ogren;Annu Rev Plant Physiol,1984
3. Photorespiration and the evolution of C4 photosynthesis;RF Sage;Ann Rev Plant Biol,2012
4. The evolution of C4 photosynthesis;RF Sage;New Phytol,2004
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献