Using time series vector features for annual cultivated land mapping: A trial in northern Henan, China

Author:

Lu Xiaoping,Zhou YushiORCID,Zhang Xiangjun,Yu Haikun,Cai Guosheng

Abstract

Annual monitoring of the spatial distribution of cultivated land is important for maintaining the ecological environment, achieving a status quo of land resource management, and guaranteeing agricultural production. With the gradual development of remote sensing technology, it has become a common practice to obtain cultivated land boundary information on a large scale with the help of satellite Earth observation images. Traditional land use classification methods are affected by multiple types of land cover, which leads to a decrease in the accuracy of cultivated land mapping. In contrast, although the current advanced methods (such as deep learning) can obtain more accurate cultivated land mapping results than traditional methods, such methods often require the use of a massive amount of training samples, large computing power, and highly complex model tuning processes, increasing the cost of mapping and requiring the involvement of more professionals. This has hindered the promotion of related methods in mapping institutions. This paper proposes a method based on time series vector features (MTVF), which uses vector thinking to establish the features. The advantage of this method is that the introduction of vector features enlarges the differences between the different land cover types, which overcomes the loss of mapping accuracy caused by the influences of the spectra of different ground objects and ensures the calculation efficiency. Moreover, the MTVF uses a traditional method (random forest) as the classification core, which makes the MTVF less demanding than advanced methods in terms of the number of training samples. Sentinel-2 satellite images were used to carry out cultivated land mapping for 2020 in northern Henan Province, China. The results show that the MTVF has the potential to accurately identify cultivated land. Furthermore, the overall accuracy, producer accuracy, and user accuracy of the overall study area and four sub-study areas were all greater than 90%. In addition, the cultivated land mapping accuracy of the MTVF is significantly better than that of the maximum likelihood, support vector machine, and artificial neural network methods.

Funder

National Key Research and Development Plan of China

Henan Polytechnic University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

1. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images;X. Xiao;Remote sensing of Environment,2016

2. A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes;I. Mohammed;ISPRS journal of photogrammetry and remote sensing,2020

3. Justice, C., and Pierre Defourny, “Developing a strategy for global agricultural monitoring in the framework of Group on Earth Observations (GEO) Workshop Report,” GEOSS Operational Agricultural Monitoring System. (2007).

4. A global land-cover validation data set, part I: Fundamental design principles;P. Olofsson;International Journal of Remote Sensing,2012

5. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia;D. Pflugmacher;Remote Sensing of Environment,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3