Improving deep learning-based segmentation of diatoms in gigapixel-sized virtual slides by object-based tile positioning and object integrity constraint

Author:

Kloster MichaelORCID,Burfeid-Castellanos Andrea M.ORCID,Langenkämper Daniel,Nattkemper Tim W.ORCID,Beszteri BánkORCID

Abstract

Diatoms represent one of the morphologically and taxonomically most diverse groups of microscopic eukaryotes. Light microscopy-based taxonomic identification and enumeration of frustules, the silica shells of these microalgae, is broadly used in aquatic ecology and biomonitoring. One key step in emerging digital variants of such investigations is segmentation, a task that has been addressed before, but usually in manually captured megapixel-sized images of individual diatom cells with a mostly clean background. In this paper, we applied deep learning-based segmentation methods to gigapixel-sized, high-resolution scans of diatom slides with a realistically cluttered background. This setup requires large slide scans to be subdivided into small images (tiles) to apply a segmentation model to them. This subdivision (tiling), when done using a sliding window approach, often leads to cropping relevant objects at the boundaries of individual tiles. We hypothesized that in the case of diatom analysis, reducing the amount of such cropped objects in the training data can improve segmentation performance by allowing for a better discrimination of relevant, intact frustules or valves from small diatom fragments, which are considered irrelevant when counting diatoms. We tested this hypothesis by comparing a standard sliding window / fixed-stride tiling approach with two new approaches we term object-based tile positioning with and without object integrity constraint. With all three tiling approaches, we trained Mask-R-CNN and U-Net models with different amounts of training data and compared their performance. Object-based tiling with object integrity constraint led to an improvement in pixel-based precision by 12–17 percentage points without substantially impairing recall when compared with standard sliding window tiling. We thus propose that training segmentation models with object-based tiling schemes can improve diatom segmentation from large gigapixel-sized images but could potentially also be relevant for other image domains.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaft und Energie

German Network for Bioinformatics Infrastructure

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3