Mixed kernel SVR addressing Parkinson’s progression from voice features

Author:

Bárcenas RobertoORCID,Fuentes-García Ruth,Naranjo LizbethORCID

Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative disease with multiple motor and non-motor characteristics. PD patients commonly face vocal impairments during the early stages of the disease. In this article, the aim is to explain the Unified Parkinson’s Disease Rating Scale (UPDRS) as a measure of the progression of Parkinson’s disease using a set of covariates obtained from voice signals. In particular, a Support Vector Regression (SVR) model based on a combination of kernel functions is introduced. Theoretically, this proposal, that relies on a mixed kernel (global and local) produces an admissible kernel function. The optimal fitting was obtained for the combination given by the product of radial and polynomial basis. Important results are the non-linear relationships inferred from the features to the response, as well as a considerable improvement in prediction performance metrics, when compared to other learning approaches. Furthermore, with knowledge on factors such as age and gender, it is possible to describe the dynamics of patients’ UPDRS from the data collected during their monitoring. In summary, these advances could expand learning processes and intelligent systems to assist in monitoring the evolution of Parkinson’s disease.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Kompoliti, K., (eds.), V.L., 2010. The encyclopedia of movement disorders. Academic Press.

2. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease;C. Ramaker;Movement Disorders,2002

3. Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders

4. Duffy, J.R., 2005. Motor speech disorders: substrates, differential diagnosis, and management, 2nd ed. Elsevier Mosby.

5. Voice characteristics in the progression of parkinson’s disease;J.R. Holmes;International Journal of Language & Communication Disorders,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3