Revisiting the sialome of the cat flea Ctenocephalides felis

Author:

Lu StephenORCID,Danchenko Monika,Macaluso Kevin R.,Ribeiro José M. C.

Abstract

The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Division of Extramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference98 articles.

1. The biology, ecology, and management of the cat flea;MK Rust;Annu Rev Entomol,1997

2. Fleas (Siphonaptera)

3. Yersinia pestis—etiologic agent of plague;RD Perry;Clin Microbiol Rev,1997

4. Yersinia pestis: the Natural History of Plague;R Barbieri;Clin Microbiol Rev,2020

5. Trends of Human Plague, Madagascar, 1998–2016;V Andrianaivoarimanana;Emerg Infect Dis,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3