Bridge crack detection based on improved single shot multi-box detector

Author:

Lu Guanlin,He XiaohuiORCID,Wang Qiang,Shao Faming,Wang Jinkang,Jiang Qunyan

Abstract

Owing to the development of computerized vision technology, object detection based on convolutional neural networks is being widely used in the field of bridge crack detection. However, these networks have limited utility in bridge crack detection because of low precision and poor real-time performance. In this study, an improved single-shot multi-box detector (SSD) called ISSD is proposed, which seamlessly combines the depth separable deformation convolution module (DSDCM), inception module (IM), and feature recalibration module (FRM) in a tightly coupled manner to tackle the challenges of bridge crack detection. Specifically, DSDCM was utilized for extracting the characteristic information of irregularly shaped bridge cracks. IM was designed to expand the width of the network, reduce network calculations, and improve network computing speed. The FRM was employed to determine the importance of each feature channel through learning, enhance the useful features according to their importance, and suppress the features that are insignificant for bridge crack detection. The experimental results demonstrated that ISSD is effective in bridge crack detection tasks and offers competitive performance compared to state-of-the-art networks.

Funder

National Natural Science Foundation of China

Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An advanced AI-based lightweight two-stage underwater structural damage detection model;Advanced Engineering Informatics;2024-10

2. Small target disease detection based on YOLOv5 framework for intelligent bridges;Peer-to-Peer Networking and Applications;2024-05-27

3. Bridging Automated Reasoning and Machine Learning for Information Analysis;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24

4. Visual Inspection Method for Subway Tunnel Cracks Based on Multi-Kernel Convolution Cascade Enhancement Learning;IEICE Transactions on Information and Systems;2023-10-01

5. Bridge Crack Detection Using Horse Herd Optimization Algorithm;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3