Tri-objective generator maintenance scheduling model based on sequential strategy

Author:

Muthana Shatha AbdulhadiORCID,Ku-Mahamud Ku Ruhana

Abstract

A multi-objective modeling approach is required in the context of generator maintenance scheduling (GMS) for power generation systems. Most multi-objective modeling approaches in practice are modeled using a periodic system approach that caters for a fixed maintenance window. This approach is not suitable for different types of generating units and cannot extend the generator lifespan. To address this issue, this study proposes a tri-objective GMS model with three conflicting objectives based on the sequential system approach that accounts for operating hours and start-up times. The GMS model’s objectives are to minimize the total operation cost, maximize system reliability and minimize violation. The main difference between the proposed tri-objective GMS model and other multi-objective GMS models, is that the proposed model uses a sequential strategy based on operating hours and start-up times. In addition, the proposed model has considered the most important criteria in scheduling the generator maintenance, and this reflects the real-life requirements in electrical power systems. A multi-objective graph model is also developed to generate the maintenance units scheduling and used in developing the proposed Pareto ant colony system (PACS) algorithm. A PACS algorithm is proposed to implement the model and obtain solution for GMS. The performance of the proposed model was evaluated using the IEEE RTS 26, 32, and 36-unit systems dataset. The performance metrics used comprise the GMS model objectives. The experimental results showed that the obtained solution from the proposed tri-objective GMS model was a robust solution by considering the different initial operational hours of the units.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. A Review of maintenance scheduling approaches in deregulated power systems;K. P. Dahal;International Conference in Power Systems,2004

2. Maintenance scheduling in the electricity industry: A literature review;A. Froger;Eur. J. Oper. Res.,2016

3. B. G. Lindner, “Bi-objective generator maintenance scheduling for a national power utility,” (Doctoral dissertation, Stellenbosch: Stellenbosch University), 2017.

4. A new approach for maintenance scheduling of generating units in electrical power systems based on their operational hours;M. Fattahi;Comput. Oper. Res.,2014

5. A sequential approach for gas turbine power plant preventative maintenance scheduling;Y. Zhao;J. Eng. Gas Turbines Power,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3