Breath detection algorithms affect multiple-breath washout outcomes in pre-school and school age children

Author:

Oestreich Marc-Alexander,Wyler Florian,Frauchiger Bettina S.,Latzin Philipp,Ramsey Kathryn A.ORCID

Abstract

Background Accurate breath detection is essential for the computation of outcomes in the multiple-breath washout (MBW) technique. This is particularly important in young children, where irregular breathing is common, and the designation of inspirations and expirations can be challenging. Aim To investigate differences between a commercial and a novel breath-detection algorithm and to characterize effects on MBW outcomes in children. Methods We replicated the signal processing and algorithms used in Spiroware software (v3.3.1, Eco Medics AG). We developed a novel breath detection algorithm (custom) and compared it to Spiroware using 2,455 nitrogen (N2) and 325 sulfur hexafluoride (SF6) trials collected in infants, children, and adolescents. Results In 83% of N2 and 32% of SF6 trials, the Spiroware breath detection algorithm rejected breaths and did not use them for the calculation of MBW outcomes. Our custom breath detection algorithm determines inspirations and expirations based on flow reversal and corresponding CO2 elevations, and uses all breaths for data analysis. In trials with regular tidal breathing, there were no differences in outcomes between algorithms. However, in 10% of pre-school children tests the number of breaths detected differed by more than 10% and the commercial algorithm underestimated the lung clearance index by up to 21%. Conclusion Accurate breath detection is challenging in young children. As the MBW technique relies on the cumulative analysis of all washout breaths, the rejection of breaths should be limited. We provide an improved algorithm that accurately detects breaths based on both flow reversal and CO2 concentration.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Multiple-Breath Washout as a Lung Function Test in Cystic Fibrosis. A Cystic Fibrosis Foundation Workshop Report;P Subbarao;Annals of the American Thoracic Society,2015

2. Inert gas washout: theoretical background and clinical utility in respiratory disease;PD Robinson;Respiration; international review of thoracic diseases,2009

3. Lung Clearance Index to Track Acute Respiratory Events in School-age Children with Cystic Fibrosis;L Perrem;Am J Respir Crit Care Med,2020

4. Lung clearance index to monitor treatment response in pulmonary exacerbations in preschool children with cystic fibrosis;JH Rayment;Thorax,2018

5. Multiple-Breath Washout Outcomes Are Sensitive to Inflammation and Infection in Children with Cystic Fibrosis;KA Ramsey;Annals of the American Thoracic Society,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3