GenPADS: Reinforcing politeness in an end-to-end dialogue system

Author:

Mishra KshitijORCID,Firdaus Mauajama,Ekbal Asif

Abstract

In a task-oriented dialogue setting, user’s mood and demands can change in an ongoing dialogue, which may lead to a non-informative conversation or may result in conversation drop-off. To rectify such scenarios, a conversational agent should be able to learn the user’s behaviour online, and form informative, empathetic and interactive responses. To incorporate these three aspects, we propose a novel end-to-end dialogue system GenPADS. First, we build and train two models, viz. a politeness classifier to extract polite information present in user’s and agent’s utterances and a generation model (G) to generate varying but semantically correct responses. We then incorporate both of these models in a reinforcement learning (RL) setting using two different politeness oriented reward algorithms to adapt and generate polite responses. To train our politeness classifier, we annotate recently released Taskmaster dataset into four fine-grained classes depicting politeness and impoliteness. Further, to train our generator model, we prepare a GenDD dataset using the same Taskmaster dataset. Lastly, we train GenPADS and perform automatic and human evaluation by building seven different user simulators. Detailed analysis reveals that GenPADS performs better than the two considered baselines,viz. a transformer based seq2seq generator model for user’s and agent’s utterance and a retrieval based politeness adaptive dialogue system (PADS).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

1. Liang Y, Meng F, Zhang Y, Xu J, Chen Y, Zhou J. Infusing multi-source knowledge with heterogeneous graph neural network for emotional conversation generation. arXiv preprint arXiv:2012.04882. 2020 Dec 9.

2. Li Q, Li P, Chen Z, Ren Z. Towards Empathetic Dialogue Generation over Multi-type Knowledge. arXiv preprint arXiv:2009.09708. 2020 Sep 21.

3. Kong X, Li B, Neubig G, Hovy E, Yang Y. An adversarial approach to high-quality, sentiment-controlled neural dialogue generation. arXiv preprint arXiv:1901.07129. 2019 Jan 22.

4. Firdaus M, Chauhan H, Ekbal A, Bhattacharyya P. More the Merrier: Towards Multi-Emotion and Intensity Controllable Response Generation. InProceedings of the AAAI Conference on Artificial Intelligence 2021 May 18 (Vol. 35, No. 14, pp. 12821–12829).

5. Lee JY, Lee KA, Gan WS. Generating Personalized Dialogue via Multi-Task Meta-Learning. arXiv preprint arXiv:2108.03377. 2021 Aug 7.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3