Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study

Author:

Keihani Ahmadreza,Mohammadi Amin Mohammad,Marzbani Hengameh,Nafissi Shahriar,Haidari Mohsen Reza,Jafari Amir HomayounORCID

Abstract

Cortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals. High-density joint EEG-sEMG (53 EEG channels, 4 sEMG bipolar channels) signals were acquired from 15 subjects (30.26 ± 4.96 years) during four specific hand and foot contraction tasks (2 dynamic and 2 static contraction). Sparse representations method was applied to detect projection of EEG signals on each sEMG channel. Bayesian optimization was employed to select best-fitted method with tuned hyperparameters on the input feeding data while using 80% data as the train set and 20% as test set. K-fold (K = 5) cross-validation method was used for evaluation of trained model. Two models were trained separately, one for CMC data and the other from sparse representation of EEG channels on each sEMG channel. Sensitivity, specificity, and accuracy criteria were obtained for test dataset to evaluate the performance of task-related and non-task sEMG channels detection. Coupling values were significantly different between grand average of task-related compared to the non-task sEMG channels (Z = -6.33, p< 0.001, task-related median = 2.011, non-task median = 0.112). Strong coupling index was found even in single trial analysis. Sparse representation approach (best fitted model: SVM, Accuracy = 88.12%, Sensitivity = 83.85%, Specificity = 92.45%) outperformed CMC method (best fitted model: KNN, Accuracy = 50.83%, Sensitivity = 52.17%, Specificity = 49.47%). Sparse representation approach offers high performance to detect CMC for discerning the EMG channels involved in the contraction tasks and non-tasks.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3