Subtractive genomics profiling for potential drug targets identification against Moraxella catarrhalis

Author:

Ashraf Bilal,Atiq Nimrah,Khan Kanwal,Wadood Abdul,Uddin ReazORCID

Abstract

Moraxella catarrhalis (M. catarrhalis) is a gram-negative bacterium, responsible for major respiratory tract and middle ear infection in infants and adults. The recent emergence of the antibiotic resistance M. catarrhalis demands the prioritization of an effective drug target as a top priority. Fortunately, the failure of new drugs and host toxicity associated with traditional drug development approaches can be avoided by using an in silico subtractive genomics approach. In the current study, the advanced in silico genome subtraction approach was applied to identify potential and pathogen-specific drug targets against M. catarrhalis. We applied a series of subtraction methods from the whole genome of pathogen based on certain steps i.e. paralogous protein that have extensive homology with humans, essential, drug like, non-virulent, and resistant proteins. Only 38 potent drug targets were identified in this study. Eventually, one protein was identified as a potential new drug target and forwarded to the structure-based studies i.e. histidine kinase (UniProt ID: D5VAF6). Furthermore, virtual screening of 2000 compounds from the ZINC database was performed against the histidine kinase that resulted in the shortlisting of three compounds as the potential therapeutic candidates based on their binding energies and the properties exhibited using ADMET analysis. The identified protein gives a platform for the discovery of a lead drug candidate that may inhibit it and may help to eradicate the otitis media caused by drug-resistant M. catarrhalis. Nevertheless, the current study helped in creating a pipeline for drug target identification that may assist wet-lab research in the future.

Funder

Higher Education Commission, Pakistan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference57 articles.

1. Moraxella catarrhalis: from emerging to established pathogen;C.M. Verduin;Clin. Microbiol. Rev.,2002

2. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles;T.T. Tan;J. Infect. Dis.,2007

3. , Moraxella catarrhalis: from interactions with the host immune system to vaccine development;Y.-C. Su;Future Microbiol.,2012

4. In Silico Prediction of a Multitope Vaccine against Moraxella catarrhalis;M.A. Soltan;Reverse Vaccinology and Immunoinformatics,2021

5. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae.;R. Hakenbeck;Future Microbiol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3